ПATIBIA UПIVERSITY
OF SCIEПCE AחD TECHחOLOGY
FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of science in Applied Mathematics and Statistics	
QUALIFICATION CODE: O7BAMS	LEVEL: 6
COURSE CODE: LIA601S	COURSE NAME: LINEAR ALGEBRA 2
SESSION: \quad JUNE 2019	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER	Dr S.N. NEOSSI NGUETCHUE AND Pr A. KAMUPINGENE
MODERATOR:	

INSTRUCTIONS

1. Answer ALL the questions in the booklet provided.
2. Show clearly all the steps used in the calculations. All numerical results must be given using 3 decimals where necessary unless mentioned otherwise.
3. All written work must be done in blue or black ink and sketches must be done in pencil.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 2 PAGES (Including this front page)

Attachments

None

QUESTION 1 [50 Marks]

1.1. Suppose that we know for a linear transformation of \mathbb{R}^{2} that $T((1,1))=(3,5)$ and $T((-1,2))=(0,1)$.
1.1.1 Find the matrix A such that $T(x)=A x$.
1.1.2 Given the basis $\mathcal{B}=\{(1,-2),(3,3)\}$, find the matrix B so that $T[x]_{\mathcal{B}}=B[x]_{\mathcal{B}}$ (that is A and B are similar relative to the basis \mathcal{B}.)
1.1.3 Find the \mathcal{B}-coordinates of the vector $x=(2,5)$ using the basis in 1.1.2 above.
1.2. Let $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ be a mapping defined by

$$
T(f(x))=f(x)+(1+x) f^{\prime}(x), \text { for any } x \in \mathbb{R}, \text { where }
$$

$P_{2}(\mathbb{R})$ is the set of all polynomials of degree at most 2 with real coefficients.
1.2.1 Show that T is a linear operator.
1.2.2 Find all the eigenvalues of T. (Hint: use the basis $p_{1}=1, p_{2}=x, p_{3}=x^{2}$)
1.2.3 Find all the eigenvalues of the operator $L=T^{5}+2 T^{3}+5 T$.

QUESTION 2 [20 Marks]

Consider the matrix $P=\left(\begin{array}{lll}4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 3 & 1\end{array}\right)$.
2.1. Find a diagonal matrix D similar to P.
2.2. Deduce from the previous question the computation of P^{5}.

QUESTION 3 [30 Marks]

3.1. Let $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ satisfy $A^{3}=A$. Show that A is diagonalizable.
3.2. Let A be a 4×4 matrix defined by

$$
A=\left(\begin{array}{cccc}
2 & 0 & 1 & -3 \\
0 & 2 & 4 & 8 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3
\end{array}\right)
$$

3.2.1 Find the minimal polynomial of A.
3.2.2 Find a Jordan canonical form J of A.

